• Онлайн: 2
TEST
До 10-летия сайта осталось:
` f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n `
` x_{1,2} = -b \pm \sqrt{b^2-4ac} / {2a} `
` f(a) = \frac{1}{2\pi i} \oint \frac {f(z)}{z-a}dz `
`hat(ab) ` `bar(xy) ` `ulA ` `vec v ` `dotx ` `ddot y `
`\[\begin{matrix} \dot{x} & = & \sigma(y-x) \\ \dot{y} & = & \rho x - y - xz \\ \dot{z} & = & -\beta z + xy \end{matrix} \] `
`\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right) \] `
`\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \] `
`\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] `
`\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] `
[ `e·sqrt{201}-sqrt{sqrt{9}} `]